Review: Principles of Mathematical Analysis

Yilin YE

September 28, 2020

Abstract

Here is the brief review of Rudin's "Principles of Mathematical Analysis". The main purpose of this document is to help myself (of course for other readers at the same time if there are some) touch basic concepts much clearly. To be brief, only important definitions and theorems would be listed, without exhaustive proofs. Enjoy the study!

Contents

1 The Real and Complex Number Systems 1
2 Basic Topology 3
3 Numerical Sequences and Series 7
4 Continuity 11
5 Differentiation 13
6 The Riemann-Stieltjes Integral 14
7 Sequences and Series of Functions 17
8 Some Special Functions 21
9 Functions of Several Variables 25
10 Integration of Differential Forms 29
11 The Lebesgue Theory 35

1 The Real and Complex Number Systems

Introduction

1.3 Definition If A is any set (whose elements may be numbers or any other objects), we write $x \in A$ to indicate that x is a member (or an element) of A. If x is not a member of A, we write $x \notin A$.

The set which contains no element will be called the empty set. If a set has at least one element, it is called nonempty.

If A and B are sets, and if every element of A is an element of B, we say that A is a subset of B, and write $A \subset B$, or $B \supset A$. If, in addition, there is an element of B which is not in A, then A is said to be a proper subset of B. Note that $A \subset A$ for every set of A. If $A \subset B$ and $B \subset A$, we write $A=B$. Otherwise $A \neq B$.

Ordered Sets

1.5 Definition Let S be a set. An order on S is a relation, denoted by $<$, with the following two properties:
(i) If $x \in S$ and $y \in S$ then one and only one of the statements is true.

$$
x<y, \quad x=y, \quad y<x
$$

(ii) If $x, y, z \in S$, if $x<y$ and $y<z$, then $x<z$.
1.6 Definition An ordered set is a set S in which an order is defined.
1.7 Definition Suppose S is an ordered set, and $E \subset S$. If there exists a $\beta \subset S$ such that $x \leqslant \beta$ for every $x \in E$, we say that E is bounded above, and call β an upper bound of E. Lower bounds are defined in the same way with \geqslant.
1.8 Definition Suppose S is an ordered set, $E \in S$, and E is bounded above. Suppose there exists an $\alpha \in S$ with the following properties :
(i) α is an upper bound of E.
(ii) If $\gamma<\alpha$ then γ is not an upper bound of E.

Then α is called the least upper bound of E or the supremum of E, and we write

$$
\alpha=\sup E
$$

The greatest lower bound, or infimum, of a set E which is bounded below is defined in the same manner. The statement $\alpha=\inf E$ means that α is a lower bound of E and that no β with $\beta>\alpha$ is a lower bound of E.
1.10 Definition An ordered set S is said to have the least-upper-bound property if the following is true: If $E \subset S, E$ is not empty, and E is bounded above, the $\sup E$ exists in S
1.11 Theorem Suppose S is an ordered set with the least-upper-bound-property, $B \subset S, B$ is not empty, and B is bounded below. Let L be the set of all lower bounds of B. Then $\alpha=\sup L$ exists in S, and $\alpha=\inf B$. In particular, $\inf B$ exists in S.

Fields

1.17 Definition An ordered field is a field F which is also an ordered set.

The Real Field

1.19 Theorem There exists an ordered field R which has the least-upper-bound property. Moreover, R contains Q as a subfield.

If $x \in R, y \in R$, and $x<y$, then there exists a $p \in Q$ such that $x<p<y$.

The Extended Real Number System

1.23 Definition The extended real number system consists of the real field R and two symbols, $+\infty$ and $-\infty$. We preserve the original order in R, and define $-\infty<x<+\infty$ for every $x \in R$.

The Complex Field

1.33 Theorem Let z and w be complex numbers, then (a) $|z|>0$ unless $z=0,|0|=0$; (b) $|\bar{z}|=|z|$; (c) $|z w|=|z||w|$; (d) $|\Re z| \leqslant|z|$; (e) $|z+w| \leqslant|z|+|w|$.
1.35 Theorem If a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n} are complex numbers, then

$$
\left|\sum_{j=1}^{n} a_{j} \bar{b}_{j}\right|^{2} \leqslant \sum_{j=1}^{n}\left|a_{j}\right|^{2} \sum_{j=1}^{n}\left|b_{j}\right|^{2}
$$

Euclidean Spaces

1.36 Definition ... we define the norm of \mathbf{x} by

$$
|\mathbf{x}|=(\mathbf{x} \cdot \mathbf{x})^{1 / 2}=\left(\sum_{i=1}^{k} x_{i}^{2}\right)^{1 / 2}
$$

The structure now defined (the vector space R^{k} with the above inner product and norm) is called euclidean k-space.

2 Basic Topology

Finite, Countable, and Uncountable Sets

2.3 Definition If there exists a 1-1 mapping of A onto B, we say that A and B can be put in 1-1 correspondence, or that A and B have the same cardinal number, or briefly, that A and B are equivalent, and we write $A \sim B$. This relation clearly has the following properties: reflexive $A \sim A$; symmetric $A \sim B \Rightarrow B \sim A$; transitive $A \sim B$ and $B \sim C \Rightarrow A \sim C$. Any relation with these three properties is called an equivalence relation.
2.4 Definition For any positive integer n, let J_{n} be the set whose elements are the integers 1, $2, \cdots, n$; let J be the set consisting of all positive integers. For any set A, we say
(a) A is finite if $A \sim J_{n}$ for some n (the empty set is also considered to be finite).
(b) A is infinite if A is not finite.
(c) A is countable if $A \sim J$.
(d) A is uncountable if A is neither finite nor countable.
(e) A is at most countable if A is finite or countable.
2.8 Theorem Every infinite subset of a countable set A is countable.
2.12 Theorem Let $\left\{E_{n}\right\}, n=1,2,3, \cdots$, be a sequence of countable sets, and put

$$
S=\bigcup_{n=1}^{\infty} E_{n}
$$

Then S is countable.
Corollary Suppose A is at most countable, and for every $\alpha \in A, B_{\alpha}$ is at most countable. Put

$$
T=\bigcup_{\alpha \in A} B_{\alpha}
$$

Then T is at most countable.
2.13 Theorem Let A be a countable set, and let B_{n} be the set of all n-tuples $\left(a_{1}, \cdots, a_{n}\right)$, where $a_{k} \in A(k=1, \cdots, n)$, and the elements a_{1}, \cdots, a_{n} need not be distinct. Then B_{n} is countable.
Corollary The set of all rational numbers is countable.
2.14 Theorem Let A be the set of all sequences whose elements are the digits 0 and 1 . This set A is uncountable. \# Turn nth digit of s_{n} to another value and there would be another novel sequence.

Metric Spaces

2.15 Definition A set X, whose elements we shall call points, is said to be a metric space if with any two points p and q of X there is associated a real number $d(p, q)$, called the distance from p to q, such that
(a) $d(p, q)>0$ if $p \neq q ; d(p, p)=0$;
(b) $d(p, q)=d(q, p)$;
(c) $d(p, q) \leqslant d(p, r)+d(r, q)$ for any $r \in X$.

Any function with these three properties is called a distance function, or a metric.

2.17 Definition

If $a_{i}<b_{i}$ for $i=1, \cdots, k$, the set of all points in R^{k} whose coordinates satisfy the inequalities $a_{i} \leqslant x_{i} \leqslant b_{i}(1 \leqslant i \leqslant k)$ is called a k-cell.

If $\mathbf{x} \in R^{k}$ and $r>0$, the open (or closed) ball B with center at \mathbf{x} and radius \mathbf{r} is defined to be the set of all $\mathbf{y} \in R^{k}$ such that $|\mathbf{y}-\mathbf{x}|<r($ or \leqslant).

We call a set $E \subset R^{k}$ convex if $\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in E$, whenever $\mathbf{x} \in E, \mathbf{y} \in E$, and $0<\lambda<1$.
2.18 Definition Let X be a metric space. All points and sets mentioned below are understood to be elements and subsets of X.
(a) A neighborhood of p is a set $N_{r}(p)$ consisting of all q such that $d(p, q)<r$, for some $r>0$.
(b) A point p is a limit point of the set E if every neighborhood of p contains a point $q \neq p$ such that $q \in E$.
(c) If $p \in E$ and p is not a limit point of E, the p is called an isolated point of E.
(d) E is closed if every limit point of E is a point of E.
(e) A point p is an interior point of E if there is a neighborhood of p such that $N \subset E$.
(f) E is open if every point of E is an interior point of E.
(g) The complement of E (denoted by E^{c}) is the set of all points $p \in X$ such that $p \notin E$.
(h) E is perfert if E is closed and if every point of E is a limit point of E.
(i) E is bounded if there is a real number M and a point $q \in X$ such that $d(p, q)<M$ for all $p \in E$.
(j) E is dense in X if every point of X is a limit point of E, or a point of E (or both).
2.19 Theorem Every neighborhood is an open set.
2.20 Theorem If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.
Corollary A finite point set has no limit points.
2.22 Theorem Let $\left\{E_{\alpha}\right\}$ be a (finite or infinite) collection of sets E_{α}. Then

$$
\left(\bigcup_{\alpha} E_{\alpha}\right)^{c}=\bigcap_{\alpha}\left(E_{\alpha}^{c}\right)
$$

2.23 Theorem A set E is open if and only if its complement is closed.

Corollary A set F is closed if and only if its complement is open.

2.24 Theorem

(a) For any collection $\left\{G_{\alpha}\right\}$ of open sets, $\cup_{\alpha} G_{\alpha}$ is open.
(b) For any collection $\left\{F_{\alpha}\right\}$ of closed sets, $\cap_{\alpha} F_{\alpha}$ is closed.
(c) For any finite collection G_{1}, \cdots, G_{n} of open sets, $\cap_{i=1}^{n} G_{i}$ is open.
(d) For any finite collection F_{1}, \cdots, F_{n} of closed sets, $\cup_{i=1}^{n} F_{i}$ is closed.
2.26 Definition If X is a metric space, if $E \subset X$ and if E^{\prime} denotes the set of all limit points of E in X, then the closure of E is the set $\bar{E}=E \cup E^{\prime}$.
2.27 Theorem If X is a metric space and $E \subset X$, then
(a) \bar{E} is closed,
(b) $E=\bar{E}$ if and only if E is closed,
(c) $\bar{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$.

By (a) and (c), \bar{E} is the smallest closed subset of X that contains E.
2.30 Theorem Suppose $Y \subset X$. A subset E of Y is open relative to Y if and only is $E=Y \cap G$ for some open subset G of X.

Compact Sets

2.31 Definition By an open cover of a set E in a metric space X, we mean a collection $\left\{G_{\alpha}\right\}$ of open subsets of X such that $E \subset \cup_{\alpha} G_{\alpha}$.
2.32 Definition A subset K of a metric space X is said to be compact if every open cover of K contains a finite subcover.

$$
K \subset G_{\alpha_{1}} \cup \cdots \cup G_{\alpha_{n}}
$$

2.33 Theorem Suppose $K \subset Y \subset X$. Then K is compact relative to X if and only if K is compact relative to Y.
2.34 Theorem Compact subsets of metric spaces are closed.
2.35 Theorem Closed subsets of compact sets are compact.

Corollary If F is closed and K is compact, then $F \cap K$ is compact.
2.36 Theorem If $\left\{K_{\alpha}\right\}$ is a collection of compact subsets of a metric space X such that the intersection of every finite subcollection of $\left\{K_{\alpha}\right\}$ is nonempty, the $\cap K_{\alpha}$ is nonempty.
Corollary If $\left\{K_{n}\right\}$ is a sequence of nonempty compact sets such that $K_{n} \supset K_{n+1}(n=$ $1,2,3, \cdots)$, then $\cap_{1}^{\infty} K_{n}$ is not empty.
2.37 Theorem If E is an infinite subset of a compact set K, then E has a limit point in K.
2.38 Theorem If $\left\{I_{n}\right\}$ is a sequence of intervals in R^{1}, such that $I_{n} \supset I_{n+1}(n=1,2,3, \cdots)$, then $\cap_{1}^{\infty} I_{n}$ is not empty.
2.39 Theorem Let k be a positive integer. If $\left\{I_{n}\right\}$ is a sequence of k-cells such that $I_{n} \supset I_{n+1}$ ($n=1,2,3, \cdots$), then $\cap_{1}^{\infty} I_{n}$ is not empty.
2.40 Theorem Every k-cell is compact.
2.41 Theorem If a set E in R^{k} has one of the following three properties, then it has the other two:
(a) E is closed and bounded.
(b) E is compact.
(c) Every infinite subset of E has a limit point in E.
2.42 Theorem (Weierstrass) Every bounded infinite subset of R^{k} has a limit point in R^{k}. \# $2.40+2.37$

Perfect Sets

2.43 Theorem Let P be a nonempty perfect set in R^{k}. Then P is uncountable.

Corollary Every interval $[\mathrm{a}, \mathrm{b}](\mathrm{a}<\mathrm{b})$ is uncountable. In particular, the set of all real numbers is uncountable.

The Cantor set, is clearly compact and nonempty. It provides us with an example of an uncountable set of measure zero.

Connected Sets

2.45 Definition Two subsets A and B of a metric space X are said to be separated if both $A \cap \bar{B}$ and $\bar{A} \cap B$ are empty, i.e., if no point of A lies in the closure of B and no point of B lies in the closure of A .

A set $E \subset X$ is said to be connected if E is not a union of two nonempty separated sets.
2.46 Theorem A subset E of the real line R^{1} is connected if and only if it has the following property: If $x \in E, y \in E$, and $x<z<y$, then $z \in E$.

3 Numerical Sequences and Series

Convergent Sequences

3.1 Definition A sequence $\left\{p_{n}\right\}$ in a metric space X is said to converge if there is a point $\underline{\underline{p \in X}}$ with the following property: For every $\epsilon>0$ there is an integer N such that $n \geqslant N$ implies that $d\left(p_{n}, p\right)<\epsilon$.

Subsequences

3.5 Definition Given a sequence $\left\{p_{n}\right\}$, consider a sequence $\left\{n_{k}\right\}$ of positive integers, such that $n_{1}<n_{2}<n_{3}<\cdots$. Then the sequence $\left\{p_{n_{i}}\right\}$ is called a sequence of $\left\{p_{n}\right\}$. If $\left\{p_{n_{i}}\right\}$ converges, its limit is called a subsequential limit of $\left\{p_{n}\right\}$.

Cauchy Sequences

3.8 Definition A sequence $\left\{p_{n}\right\}$ in a metric space X is said to be a Cauchy sequence if for every $\epsilon>0$ there is an integer N such that $d\left(p_{n}, p_{m}\right)<\epsilon$ if $n \geqslant N$ and $m \geqslant N$.

3.11 Theorem

(a) In any metric space X, every convergent sequence is a Cauchy sequence.
(b) If X is a compact metric space and if $\left\{p_{n}\right\}$ is a Cauchy sequence in X, then $\left\{p_{n}\right\}$ converges to some point of X.
(c) In R^{k}, every Cauchy sequence converges.

Note: The difference between the definition of convergence and the definition of a Cauchy sequence, is that the limit is explicitly involved in the former, but not in the latter.

3.12 Definition

A metric space in which every Cauchy sequence converges is said to be complete.

Upper and Lower Limits

3.19 Theorem If $s_{n} \leqslant t_{n}$ for $n \geqslant N$, where N is fixed, then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \inf s_{n} \leqslant \lim _{n \rightarrow \infty} \inf t_{n} \\
& \lim _{n \rightarrow \infty} \sup s_{n} \leqslant \lim _{n \rightarrow \infty} \sup t_{n}
\end{aligned}
$$

Some Special Sequences

3.20

(a) If $p>0$, then $\lim _{n \rightarrow \infty} \frac{1}{n^{p}}=0$.
(b) If $p>0$, then $\lim _{n \rightarrow \infty} \sqrt[n]{p}=1$.
(c) $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$.
(d) If $p>0$ and α is real, then $\lim _{n \rightarrow \infty} \frac{n^{\alpha}}{(1+p)^{n}}=0$.
(e) If $|x|<1$, then $\lim _{n \rightarrow \infty} x^{n}=0$.

Series

3.22 Theorem $\sum a_{n}$ converges if and only if for every $\epsilon>0$ there is an integer N such that

$$
\left|\sum_{k=n}^{m} a_{k}\right| \leqslant \epsilon
$$

if $m \geqslant n \geqslant N$.
In other words, we have 3.23:
3.23 Theorem If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.

3.25 Theorem

(a) If $\left|a_{n}\right| \leqslant c_{n}$ for $n \geqslant N_{0}$, where N_{0} is some fixed integer, and if $\sum c_{n}$ converges, then $\sum a_{n}$ converges.
(b) If $a_{n} \geqslant d_{n} \geqslant 0$ for $n \geqslant N_{0}$, and if $\sum d_{n}$ diverges, then $\sum a_{n}$ diverges.

Series of Nonnegative Terms

3.26 If $0 \leqslant x \leqslant 1$, then

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

If $x \geqslant 1$, the series diverges.
$3.28 \sum \frac{1}{n^{p}}$ converges if $p>1$ and diverges if $p \leqslant 1$.
3.29 If $p>1$,

$$
\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{p}}
$$

converges; if $p \leqslant 1$, the series diverges.

The Number e

3.30 Definition

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

3.31 Theorem

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

And e is irrational.

The Root and Ratio Tests;

3.33 Theorem (Root Test) Given $\sum a_{n}$, put $\alpha=\lim _{n \rightarrow \infty}$ sup $\sqrt[n]{\left|a_{n}\right|}$. Then
(a) if $\alpha<1, \sum a_{n}$ converges;
(b) if $\alpha>1, \sum a_{n}$ diverges;
(c) if $\alpha=1$, the test gives no information.
3.34 Theorem (Ratio Test) The series $\sum a_{n}$
(a) converges if $\lim _{n \rightarrow \infty} \sup \left|\frac{a_{n+1}}{a_{n}}\right|<1$,
(b) diverges if $\left|\frac{a_{n+1}}{a_{n}}\right| \geqslant 1$ for all $n \geqslant n_{0}$, where n_{0} is some fixed integer.
3.37 Theorem For any sequence $\left\{c_{n}\right\}$ of positive numbers,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \inf \frac{c_{n+1}}{c_{n}} \leqslant \lim _{n \rightarrow \infty} \inf \sqrt[n]{c_{n}} \\
& \lim _{n \rightarrow \infty} \sup \sqrt[n]{c_{n}} \leqslant \lim _{n \rightarrow \infty} \sup \frac{c_{n+1}}{c_{n}}
\end{aligned}
$$

Power Series

3.38 Definition Given a sequence $\left\{c_{n}\right\}$ of complex numbers, the series

$$
\sum_{n=0}^{\infty} c_{n} z^{n}
$$

is called a power series. The numbers c_{n} are called the coefficients of the series; z is a complex number.
3.39 Theorem Given the power series $\sum c_{n} z^{n}$, put

$$
\alpha=\lim _{n \rightarrow \infty} \sup \sqrt[n]{c_{n}}, \quad R=\frac{1}{\alpha}
$$

Then the series converges if $|z|<R$, and diverger if $|z|>R$.

Summation by Parts

Absolute Convergence

The series $\sum a_{n}$ is said to converge absolutely if the series $\sum\left|a_{n}\right|$ converges. If $\sum a_{n}$ converges absolutely, then $\sum a_{n}$ converges.

Addition and Multiplication of Series

3.50 Theorem Suppose
(a) $\sum_{n=0}^{\infty} a_{n}$ converges absolutely,
(b) $\sum_{n=0}^{\infty} a_{n}=A$,
(c) $\sum_{n=0}^{\infty} b_{n}=B$,
(d) $c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k} \quad(n=0,1,2, \cdots)$.

Then

$$
\sum_{n=0}^{\infty} c_{n}=A B
$$

That is, the product of two convergent series converges, and to the right value, if at least one of the two series converges absolutely.
3.51 Theorem If the series $\sum a_{n}, \sum b_{n}, \sum c_{n}$ converge to A, B, C, and $c_{n}=a_{0} b_{n}+\cdots+a_{n} b_{0}$, then $C=A B$. \# Here no assumption is made concerning absolute convergence. We shall give a simple proof (which depends on the continuity of power series) after 8.2.

Rearrangements

3.52 Definition Let $\left\{k_{n}\right\}, n=1,2,3, \cdots$, be a sequence in which every positive integer appears once and only once (that is, $\left\{k_{n}\right\}$ is a 1-1 functions from J onto J). Put

$$
a_{n}^{\prime}=a_{k_{n}} \quad n=1,2,3, \cdots
$$

we say that $\sum a_{n}^{\prime}$ is a rearrangement of $\sum a_{n}$.
3.54 Theorem Let $\sum a_{n}$ be a series of real numbers which converges, but not absolutely. Suppose $-\infty \leqslant \alpha \leqslant \beta \leqslant+\infty$, then there exists a rearrangement $\sum a_{n}^{\prime}$ with partial sums s_{n}^{\prime} such that

$$
\lim _{n \rightarrow \infty} \inf s_{n}^{\prime}=\alpha \quad \lim _{n \rightarrow \infty} \sup s_{n}^{\prime}=\beta
$$

3.55 Theorem If $\sum a_{n}$ is a series of complex numbers which converge absolutely, then every rearrangement of $\sum a_{n}$ converges, and they all converge to the same sum.

4 Continuity

Limits of Functions

... ...

Continuous Functions

4.5 Definition Suppose X and Y are metric spaces, $E \subset X, p \in E$, and f maps E into Y. Then f is said to be continuous at p if for every $\epsilon>0$ there exists a $\delta>0$ such that $d_{Y}(f(x), f(p))<\epsilon$ for all points $x \in E$ for which $d_{X}(x, p)<\delta$. If f is continuous at every point of E, then f is said to be continuous on E.
4.8 Theorem A mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
Corollary A mapping f of a metric space X into a metric space Y is continuous if and only if $f^{-1}(C)$ is closed in X for every closed set C in Y.
4.9 Theorem Let f and g be complex continuous functions on a metric space X. Then $f+g$, $f g$, and f / g are continuous on $X .(g(x) \neq 0$ for all $x \in X$ in the last case.)
4.10 Theorem Let f_{1}, \cdots, f_{k} be real functions on a metric space X, and let \mathbf{f} be the mapping of X into R^{k} defined by

$$
\mathbf{f}(x)=\left(f_{1}(x), \cdots, f_{k}(x)\right) \quad(x \in X)
$$

then \mathbf{f} is countinuous if and only if each of the functions f_{1}, \cdots, f_{k} is coutinuous.

Continuity and Compactness

4.13 Definition A mapping \mathbf{f} of a set E into R^{k} is said to be bounded if there is a real number M such that $|\mathbf{f}(x)| \leqslant M$ for all $x \in E$.
4.14 Theorem Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then $f(X)$ is compact. \# By 4.8
4.15 Theorem If \mathbf{f} is a continuous mapping of a compact metric space X into R^{k}, then $\mathbf{f}(x)$ is closed and bounded. Thus, \mathbf{f} is bounded. \# By 2.41
4.16 Theorem Suppose f is a continuous real function on a compact metric space X, and $M=\sup _{p \in X} f(p), m=\inf _{p \in X} f(p)$. Then there exist points $p, q \in X$ such that $f(p)=M$ and $f(q)=m$.
4.18 Definition Let f be a mapping of a metric space X into a metric space Y. We say that f is uniformly continuous on X if for every $\epsilon>0$ there exists $\delta>0$ such that

$$
d_{Y}(f(p), f(q))<\epsilon
$$

for all p and q in X for which $d_{X}(p, q)<\delta$.
First, uniform continuity is a property of a function on a set, whereas continuity can be defined at a single point. Second, if f is continuous on X, then it is possible to find, for each
$\epsilon>0$ and for each point p of X, a number $\delta>0$ having the property specified in 4.5 , in which δ depends on ϵ and p; however, if f uniformly continuous on X, then it is possible, for each $\epsilon>0$, to find one number $\delta>0$ which will do for all points p of X.
4.19 Theorem Let f be a continuous mapping of a compact metric space X into a metric space Y. Then f is uniformly continuous on X.

Continuity and Connectedness

4.22 Theorem If f is a continuous mapping of a metric space X into a metric space Y, and if E is a connected subset of X, then $f(E)$ is connected. \# See 2.45 for connected.

Discontinuities

If x is a point in the domain of definition of the function f at which f is not continuous, we say that f is discontinuous at x, or that f has a discontinuity at x. If f is defined on an interval or on a segment, it is customary to divide discontinuities into two types.
4.26 Definition If f is discontinuous at a point x, and if $f(x+)$ and $f(x-)$ exist, then f is said to have a discontinuity of the first kind, or a simple discontinuity at x. Otherwise the discontinuity is said to be of the second kind.

Monotonic Function

4.28 Definition Let f be real on (a, b). Then f is said to be monotonically increasing on (a, b) if $a<x<y<b$ implies $f(x) \leqslant f(y)$.

Infinite Limits and Limits at Infinity

4.32 Definition For any real c, the set of real numbers x such that $x>c$ is called a neighborhood of $+\infty$ and is written $(c,+\infty)$. Similarly, the set $(-\infty, c)$ is a neighborhood of $-\infty$.

5 Differentiation

The Derivative of a Real Function

5.1 Definition

$$
f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x}
$$

If f is differentiable at a point x, then f is continuous at x.

Mean Value Theorems

5.9 Theorem If f and g are continuous real functions on $[a, b]$ which are differentiable in (a, b), then there is a point $x \in(a, b)$ at which

$$
[f(b)-f(a)] g^{\prime}(x)=[g(b)-g(a)] f^{\prime}(x)
$$

The Continuity of Derivatives

5.12 Theorem Suppose f is a real differentiable function on $[a, b]$ and suppose $f^{\prime}(a)<\lambda<$ $f^{\prime}(b)$. Then there is a point $x \in(a, b)$ such that $f^{\prime}(x)=\lambda$.

If f is differentiable on $[a, b]$, then f^{\prime} cannot have any simple discontinuities on $[a, b]$. But f^{\prime} may very well have discontinuities of the second kind.

L'Hospital's Rule

5.13 Theorem Suppose f and g are real and differentiable in (a, b), and $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, where $-\infty \leqslant a<b \leqslant+\infty$. If $x \rightarrow a, f(x) \rightarrow 0, g(x) \rightarrow 0$ (or ∞), suppose as $x \rightarrow a$

$$
\frac{f^{\prime}(x)}{g^{\prime}(x)} \rightarrow A \quad \Rightarrow \quad \frac{f(x)}{g(x)} \rightarrow A
$$

Derivatives of Higher Order

Taylor's Theorem

5.15 Theorem Suppose f is a real function on $[a, b], n$ is a positive integer, $f^{(n-1)}$ is continuous on $[a, b], f^{(n)}(t)$ exists for every $t \in(a, b)$. Let α, β be distinct points of $[a, b]$, and define

$$
P(t)=\sum_{k=0}^{n-1} \frac{f^{(k)}(\alpha)}{k!}(t-\alpha)^{k}
$$

Then there exists a point x between α and β such that

$$
f(\beta)=P(\beta)+\frac{f^{(n)}(x)}{n!}(\beta-\alpha)^{n}
$$

Differentiation of Vector-valued Functions

6 The Riemann-Stieltjes Integral

Definition and Existence of the Integral

6.1 Definition Let $[a, b]$ be a given interval. By a partition P of $[a, b]$ we mean a finite set of points $x_{0}, x_{1}, \cdots, x_{n}$, where

$$
a=x_{0} \leq x_{1} \leq \cdots \leq x_{n-1} \leq x_{n}=b
$$

We write $\Delta x_{i}=x_{i}-x_{i-1}$. Suppose f is a bounded real function defined on $[a, b]$, corresponding to each partition P of $[a, b]$ we put

$$
\begin{array}{cc}
M_{i}=\sup f(x) & \left(x_{i-1} \leq x \leq x_{i}\right) \\
m_{i}=\inf f(x) & \left(x_{i-1} \leq x \leq x_{i}\right) \\
U(P, f)=\sum_{i=1}^{n} M_{i} \Delta x_{i} & L(P, f)=\sum_{i=1}^{n} m_{i} \Delta x_{i}
\end{array}
$$

and finally

$$
\bar{\int}_{a}^{b} f d x=\inf U(P, f) \quad \underline{\int}_{a}^{b} f d x=\sup L(P, f)
$$

If the upper and lower integrals are equal, we say that f is Riemann-integrable on $[a, b]$. We write $f \in \mathscr{R}$ and \mathscr{R} denotes the set of Riemann-integrable functions.
6.2 Definition Let α be a monotonically increasing function on $[a, b]$. Corresponding to each partition P of $[a, b]$, we write $\Delta \alpha_{i}=\alpha\left(x_{i}\right)-\alpha\left(x_{i-1}\right)$. For any real function f which is bounded on $[a, b]$, we put

$$
U(P, f, \alpha)=\sum_{i=1}^{n} M_{i} \Delta \alpha_{i} \quad L(P, f, \alpha)=\sum_{i=1}^{n} m_{i} \Delta \alpha_{i}
$$

where M_{i} and m_{i} have the same meaning in 6.1 , and we define

$$
\bar{\int}_{a}^{b} f d \alpha=\inf U(P, f, \alpha) \quad \underline{\int}_{a}^{b} f d \alpha=\sup L(P, f, \alpha)
$$

If these two values are equal, we denote their common value by $\int_{a}^{b} f d \alpha$, and this is the RiemannStieltjes integral of f with respect to α over $[a, b]$.
6.3 Definition We say that the partition P^{*} is a refinement of P if $P^{*} \supset P$ (that is, if every point of P is a point of $\left.P^{*}\right)$. Given two partition, P_{1} and P_{2}, we say that P^{*} is their common refinement if $P^{*}=P_{1} \cup P_{2}$.
6.4 Theorem If P^{*} is a refinement of P, then

$$
\begin{gathered}
L(P, f, \alpha) \leq L\left(P^{*}, f, \alpha\right) \quad U\left(P^{*}, f, \alpha\right) \leq U(P, f, \alpha) \\
\underline{\int}_{a}^{b} f d \alpha \leq{\overline{\int_{a}}}_{a}^{b} f d \alpha
\end{gathered}
$$

6.8 Theorem If f is continuous on $[a, b]$ then $f \in \mathscr{R}(\alpha)$ on $[a, b]$. \# R^{k} compact, f uniformly continuous. (4.19)
6.9 Theorem If f is monotonic on $[a, b]$, and if α is continuous on $[a, b]$, then $f \in \mathscr{R}(\alpha)$. (We still assume, of course, that α is monotonic.)
6.10 Theorem Suppose f is bounded on $[a, b], f$ has only finitely many points of discontinuity on $[a, b]$, and α is continuous at every point at which f is discontinuous. Then $f \in \mathscr{R}(\alpha)$.
6.11 Theorem Suppose $f \in \mathscr{R}(\alpha)$ on $[a, b], m \leq f \leq M, \phi$ is continuous on [m, M], and $h(x)=\phi(f(x))$ on $[a, b]$. Then $h \in \mathscr{R}(\alpha)$ on $[a, b]$. \# See 11.33

Properties of the Integral

If $f \in \mathscr{R}(\alpha)$, then $|f| \in \mathscr{R}(\alpha)$ and

$$
\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha
$$

6.17 Theorem Assume α increases monotonically and $\alpha^{\prime} \in \mathscr{R}$ on $[a, b]$. Let f be a bounded real function on $[a, b]$. Then $f \in \mathscr{R}(\alpha)$ if and only if $f \alpha^{\prime} \in \mathscr{R}$. In that case

$$
\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x
$$

Integration and Differentialtion

6.20 Theorem Let $f \in \mathscr{R}$ on $[a, b]$. For $a \leq x \leq b$, put

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Then F is continuous on $[a, b]$; furthermore, if f is continuous at a point x_{0} of $[a, b]$, then F is differentiable at x_{0} and $\underline{\underline{F^{\prime}}\left(x_{0}\right)=f\left(x_{0}\right)}$.
6.21 The fundamental theorem of calculus If $f \in \mathscr{R}$ on $[a, b]$ and if there is a differentiable function F on $[a, b]$ such that $F^{\prime}=f$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

6.22 Theorem (integration by parts) Suppose F and G are differentiable functions on $[a, b], F^{\prime}=f \in \mathscr{R}$, and $G^{\prime}=g \in \mathscr{R}$. Then

$$
\int_{a}^{b} F(x) g(x) d x=F(b) G(b)-F(a) G(a)-\int_{a}^{b} f(x) G(x) d x
$$

Integration of Vector-valued Functions

6.23 Definition Let f_{1}, \cdots, f_{k} be real functions on $[a, b]$, and let $\mathbf{f}=\left(f_{1}, \cdots, f_{k}\right)$ be the corresponding mapping of $[a, b]$ into R^{k}. If α increases monotonically on $[a, b]$, to say that $\mathbf{f} \in \mathscr{R}(\alpha)$ meansthatf $_{j} \in \mathscr{R}(\alpha)$ for $j=1, \cdots, k$. If this is the case, we define

$$
\int_{a}^{b} \mathbf{f} d \alpha=\left(\int_{a}^{b} f_{1} d \alpha, \cdots, \int_{a}^{b} f_{k} d \alpha\right)
$$

Rectifiable Curves

6.26 Definition A continuous mapping γ of an interval $[a, b]$ into R^{k} is called a curve in R^{k}. If γ is one-to-one, γ is called an arc. If $\gamma(a)=\gamma(b), \gamma$ is said to be a closed curve.

$$
\Lambda(P, \gamma)=\sum_{i=1}^{n}\left|\gamma\left(x_{i}\right)-\gamma\left(x_{i-1}\right)\right| \quad \Lambda(\gamma)=\sup \Lambda(P, \gamma)
$$

6.27 Theorem If γ^{\prime} is continuous on $[a, b]$, then γ is rectifiable, and

$$
\Lambda(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t
$$

7 Sequences and Series of Functions

Discussion of Main Problem

7.1 Definition Suppose $\left\{f_{n}\right\}, n=1,2,3, \cdots$, is a sequence of functions defined on a set E, and suppose that the sequence of numbers $\left\{f_{n}(x)\right\}$ converges for every $x \in E$. We can then define a function f by

$$
f(x)=\lim _{n \rightarrow \infty} f_{n}(x) \quad x \in E
$$

Under these circumstances we say that $\left\{f_{n}\right\}$ converges on E and that f is the limit, or the limit function, of $\left\{f_{n}\right\}$. Sometimes we shall use a more descriptive terminology and shall say that " $\left\{f_{n}\right\}$ converges to f pointwise on E ". Similaryly if $\sum f_{n}(x)$ converges for every $x \in E$, and if we define

$$
f(x)=\sum_{n=1}^{\infty} f_{n}(x) \quad x \in E
$$

the function f is called the sum of the series $\sum f_{n}$.

Uniform Convergence

7.7 Definition We say that a sequence of functions $\left\{f_{n}\right\}, n=1,2,3, \cdots$, converges uniformly on E to a function f if for every $\epsilon>0$ there is an integer N such that $n \geq N$ implies $\left|f_{n}(x)-f(x)\right| \leq \epsilon$ for all $x \in E$.

It is clear that every uniformly convergent sequence is pointwise convergent. Quite explicitly, the difference between the two concepts is this:

- If $\left\{f_{n}\right\}$ converges pointwise on E, then there exists a function f such taht, for every $\epsilon>0$, and for every $x \in E$, there is an integer N, depending on ϵ and on x.
- If $\left\{f_{n}\right\}$ converges uniformly on E, it is possible, for each $\epsilon>0$, to find one integer N which will do for all $x \in E$.
7.8 Theorem The sequence of functions $\left\{f_{n}\right\}$, defined on E, converges uniformly on E if and only if for every $\epsilon>0$ there exists an integer N such that $m \geq N, n \geq N, x \in E$ implies $\left|f_{n}(x)-f_{m}(x)\right| \leq \epsilon$.
7.9 Theorem Suppose $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)(x \in E)$. Put $\left.M_{n}=\sup _{x \in E} \mid f_{n}(x)-f_{(} x\right) \mid$. Then $f_{n} \rightarrow f$ uniformly on E if and only if $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
7.10 Theorem Suppose $\left\{f_{n}\right\}$ is a sequence of functions defined on E, and suppose $\left|f_{n}(x)\right| \leq M_{n}$ $(x \in E, n=1,2,3, \cdots)$. Then $\sum f_{n}$ converges uniformly on E if $\sum M_{n}$ converges.

Uniform Convergence and Continuity!

7.11 Theorem Suppose $f_{n} \rightarrow f$ uniformly on a set E in a metric space. Let x be a limit point of E, and suppose that $\lim _{t \rightarrow x} f_{n}(t)=A_{n}(n=1,2,3, \cdots)$. Then $\left\{A_{n}\right\}$ converges, and

$$
\lim _{t \rightarrow x} f(t)=\lim _{n \rightarrow \infty} A_{n}
$$

In other words, the conclusion is that

$$
\lim _{t \rightarrow x} \lim _{n \rightarrow \infty} f_{n}(t)=\lim _{n \rightarrow \infty} \lim _{t \rightarrow x} f_{n}(t)
$$

7.12 Theorem If $\left\{f_{n}\right\}$ is a sequence of continuous functions on E, and if $f_{n} \rightarrow f$ uniformly on E, then f is continuous on E.

Note: The converse is not true. A sequence of continuous functions may converge to a continuous function, although the convergence is not uniform.
7.13 Theorem Suppose K is compact, and
(a) $\left\{f_{n}\right\}$ is a sequence of continuous functions on K,
(b) $\left\{f_{n}\right\}$ converges pointwise to a continuous function f on K,
(c) $f_{n}(x) \geq f_{n+1}(x)$ for all $x \in K, n=1,2,3, \cdots$

Then $f_{n} \rightarrow f$ uniformly on K.
7.14 Definition If X is a metric space, $\mathscr{C}(X)$ will denote the set of all complex-valued, continuous, bounded functions with domain X.

We associate with each $f \in \mathscr{C}(X)$ its supremum norm

$$
\|f\|=\sup _{x \in X}|f(x)|
$$

If $h=f+g$, then

$$
|h(x)| \leq|f(x)|+|g(x)| \leq\|f\|+\|g\| \quad \Rightarrow \quad\|f+g\| \leq\|f\|+\|g\|
$$

If we define the distance between $f \in \mathscr{C}(X)$ and $g \in \mathscr{C}(X)$ to be $\|f-g\|$, it follows that 2.15 for a metric are satisfied. Thus we have made $\mathscr{C}(X)$ into a metric space.

Accordingly, closed subsets of $\mathscr{C}(X)$ are sometimes called uniformly closed, the closure of a set $\mathscr{A} \subset \mathscr{C}(X)$ is called its uniform closure, and so on ...
7.15 Theorem The above metric make $\mathscr{C}(X)$ into a complete metric space.

Uniform Convergence and Integration

7.16 Theorem Let α be monotonically increasing on $[a, b]$. Suppose $f_{n} \in \mathscr{R}(\alpha)$ on $[a, b]$, for $n=1,2,3, \cdots$, and suppose $f_{n} \rightarrow f$ uniformly on $[a, b]$. Then $f \in \mathscr{R}(\alpha)$ on $[a, b]$, and

$$
\int_{a}^{b} f d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d \alpha
$$

Uniform Convergence and Differentiation

7.17 Theorem Suppose $\left\{f_{n}\right\}$ is a sequence of functions, differentiable on $[a, b]$ and such that $\left\{f_{n}\left(x_{0}\right)\right\}$ converges for some point x_{0} on $[a, b]$. If $\left\{f_{n}^{\prime}\right\}$ converges uniformly on $[a, b]$, then $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$, to a function f, and

$$
f^{\prime}(x)=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)
$$

7.18 Theorem There exists a real continuous function on the real line which is nowhere differentiable.

Equicontinuous Families of Functions

7.19 Definition Let $\left\{f_{n}\right\}$ be a sequence of functions defined on a set E.

We say that $\left\{f_{n}\right\}$ is pointwise bounded on E if the sequence $\left\{f_{n}(x)\right\}$ is bounded for every $x \in E$, that if there exists a finite-valued function ϕ defined on E such that

$$
\left|f_{n}(x)\right|<\phi(x)
$$

We say that $\left\{f_{n}\right\}$ is uniformly bounded on E if there exists a number M such that

$$
\left|f_{n}(x)\right|<M
$$

However, even if $\left\{f_{n}\right\}$ is a uniformly bounded sequence of continuous functions on a compact set E, there need not exist a subsequence which converges pointwise on E.
7.22 Definition A family \mathscr{F} of complex functions f defined on a set E in a metric space X is said to be quicontinuous on E if for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-f(y)|<\epsilon
$$

whenever $d(x, y)<\delta, x \in E, y \in E$, and $f \in \mathscr{F}$. Here d denotes the metric of X.
7.23 Theorem If $\left\{f_{n}\right\}$ is a pointwise bounded sequence of complex functions on a countable set E, then $\left\{f_{n}\right\}$ has a subsequence $\left\{f_{n_{k}}\right\}$ such that $\left\{f_{n_{k}}(x)\right\}$ converges for every $x \in E$.
7.24 Theorem If K is a compact metric space, if $f_{n} \in \mathscr{C}(K)$ for $n=1,2,3, \cdots$ and if $\left\{f_{n}\right\}$ converges uniformly on K, then $\left\{f_{n}\right\}$ is equicontinuous on K.
7.25 Theorem If K is compact, if $f_{n} \in \mathscr{C}(K)$ for $n=1,2,3, \cdots$, and if $\left\{f_{n}\right\}$ is pointwise bounded and equicontinuous on K, then
(a) $\left\{f_{n}\right\}$ is uniformly bounded on K,
(b) $\left\{f_{n}\right\}$ contains a uniformly convergent subsequence.

The Stone-Weierstrass Theorem

7.26 Theorem If f is a continuous complex function on $[a, b]$, there exists a sequence of polynomials P_{n} such that

$$
\lim _{n \rightarrow \infty} P_{n}(x)=f(x)
$$

uniformly on $[a, b]$. If f is real, the P_{n} may be taken real. \# This is the form in which the theorem was originally discovered by Weierstrass.
7.28 Definition A family \mathscr{A} of complex functions defined on a set E is said to be an algebra if (i) $f+g \in \mathscr{A}$, (ii) $f g \in \mathscr{A}$, (iii) $c f \in \mathscr{A}$ for all $f \in \mathscr{A}, g \in \mathscr{A}$ and for all complex constants c, that is, if \mathscr{A} is closed under addition, multiplication, and scalar multiplication.

If \mathscr{A} has the property that $f \in \mathscr{A}$ whenever $f_{n} \in \mathscr{A}(n=1,2,3, \cdots)$ and $f_{n} \rightarrow f$ uniformly on E, then \mathscr{A} is said to be uniformly closed.

Let \mathscr{B} be the set of all functions which are limits of uniformly convergent sequences of members of \mathscr{A}. Then \mathscr{B} is called the uniform closure of \mathscr{A}. \# See 7.14
7.29 Theorem Let \mathscr{B} be the uniform closure of an algebra \mathscr{A} of bounded functions. Then \mathscr{B} is a uniformly closed algebra.
7.30 Definition Let \mathscr{A} be a family of functions on a set E. Then \mathscr{A} is said to separate points on E if to every pair of distinct points $x_{1}, x_{2} \in E$ there corresponds a function $f \in \mathscr{A}$ such that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$.

If to each $x \in E$ there corresponds a function $g \in \mathscr{A}$ such that $g(x) \neq 0$, we say that \mathscr{A} vanishes at no point of E.
7.31 Theorem Suppose \mathscr{A} is an algebra of functions on a set E, \mathscr{A} separates points on E, and \mathscr{A} vanishes at no point of E. Suppose x_{1}, x_{2} are distinct points of E, and c_{1}, c_{2} are constants (real if \mathscr{A} is a real algebra). Then \mathscr{A} contains a function f such that $f\left(x_{1}\right)=c_{1}$ and $f\left(x_{2}\right)=c_{2}$.
7.32 Theorem! Let \mathscr{A} be an algebra of real continuous functions on a compact set K. If \mathscr{A} separates points on K and if \mathscr{A} vanishes at no point of K, then the uniform closure \mathscr{B} of \mathscr{A} consists of all real continuous functions on K. Note: 7.32 does not hold for complex algebras.

STEP 1 If $f \in \mathscr{B}$, then $|f| \in \mathscr{B}$.
STEP 2 If $f \in \mathscr{B}$ and $g \in \mathscr{B}$, then $\max (f, g) \in \mathscr{B}$ and $\min (f, g) \in \mathscr{B}$.
STEP 3 Given a real function f, continuous on K, a point $x \in K$, and $\epsilon>0$, there exists a function $g_{x} \in \mathscr{B}$ such that $g_{x}(x)=f(x)$ and $g_{x}(t)>f(t)-\epsilon(t \in K)$.

STEP 4 Given a real function f, continuous on K, and $\epsilon>0$, there exists a function $h \in \mathscr{B}$ such that $|h(x)-f(x)|<\epsilon(x \in K)$.
7.33 Theorem Suppose \mathscr{A} is a self-adjoint algebra of complex continuous functions on a compact set K, \mathscr{A} separates points on K, and \mathscr{A} vanishes at no point of K. Then the uniform closure \mathscr{B} of \mathscr{A} consists of all complex continuous functions on K. In other words, \mathscr{A} is dense $\mathscr{C}(K)$.

8 Some Special Functions

Power Series

8.1 Theorem Suppose the series $\sum_{n=0}^{\infty} c_{n} x^{n}$ converges for $|x|<R$ and define $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$ $(|x|<R)$. Then the series converges uniformly on $[-R+\epsilon, R-\epsilon]$, no matter which $\epsilon>0$ is chosen. The function f is continuous and differentiable in $(-R, R)$ and $f^{\prime}(x)=\sum_{n=1}^{\infty} n c_{n} x^{n-1}$.

$$
f^{(k)}(x)=\sum_{n=k}^{\infty} n(n-1) \cdots(n-k+1) c_{n} x^{n-k}
$$

8.3 Theorem Given a double sequence $\left\{a_{i j}\right\}$, suppose that $\sum_{j=1}^{\infty}\left|a_{i j}\right|=b_{i}$ and $\sum b_{i}$ converges. Then

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_{i j}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} a_{i j}
$$

8.4 Theorem Suppose

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

the series converging in $|x|<R$. If $-R<a<R$, then f can be expanded in a power series about the point $x=a$ which converges in $|x-a|<R-|a|$, and

$$
f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}
$$

This is an extension of 5.15 and is also known as Taylor's theorem.
8.5 Theorem Suppose the series $\sum a_{n} x^{n}$ and $\sum b_{n} x^{n}$ converge in the segment $S=(-R, R)$.

Let E be the set of all $x \in S$ at which

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} b_{n} x^{n}
$$

If E has a limit point in S, then $a_{n}=b_{n}$ for $n=0,1,2, \cdots$. Hence the equation holds for all $x \in S$.

The Exponential and Logarithmic Functions

$$
E(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}=e^{z}
$$

The Trigonometric Functions

$$
C(x)=\frac{1}{2}[E(i x)+E(-i x)] \quad S(x)=\frac{1}{2 i}[E(i x)-E(-i x)]
$$

The Algebraic Completeness of the Complex Field

8.8 Theorem Suppose a_{0}, \cdots, a_{n} are complex numbers, $n \geq 1, a_{n} \neq 0$,

$$
P(z)=\sum_{k=0}^{n} a_{k} z^{k}
$$

Then $P(z)=0$ for some complex number z.

Fourier Series

8.9 Definition A trigonometric polynomial is a finite sum of the norm (x real)

$$
f(x)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{-N}^{N} c_{n} e^{i n x}
$$

where $a_{0}, \cdots, a_{N}, b_{0}, \cdots, b_{N}$ are complex numbers...

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{i n x} d x= \begin{cases}1 & (\text { if } \mathrm{n}=0) \\ 0 & (\text { if } \mathrm{n}= \pm 1, \pm 2, \cdots)\end{cases}
$$

Multiplied by $e^{-i m x}$, where m is an integer, we have

$$
c_{m}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i m x} d x
$$

We define a series of the form (x real)

$$
\sum_{-\infty}^{\infty} c_{n} e^{i n x}
$$

If f is an integrable function on $[-\pi, \pi]$, the numbers c_{m} defined above for all integers m are called the Fourier coefficients of f, and this series formed with these coefficients is called the Fourier series of f.
8.10 Definition Let $\left\{\phi_{n}\right\}(n=1,2,3, \cdots)$ be a sequence of complex functions on $[a, b]$ such that

$$
\int_{a}^{b} \phi_{n}(x) \overline{\phi_{m}(x)} d x=0 \quad(n \neq m)
$$

Then $\left\{\phi_{n}\right\}$ is said to be an orthogonal system of functions on $[a, b]$. If, in addition,

$$
\int_{a}^{b}\left|\phi_{n}(x)\right|^{2} d x=1
$$

for all n, $\left\{\phi_{n}\right\}$ is said to be orthonormal. For example, the functions $(2 \pi)^{-1 / 2} e^{i n x}$ form an orthonormal system on $[-\pi, \pi]$. So do the real functions

$$
\frac{1}{\sqrt{2 \pi}}, \frac{\cos x}{\sqrt{\pi}}, \frac{\sin x}{\sqrt{\pi}}, \frac{\cos 2 x}{\sqrt{\pi}}, \frac{\sin 2 x}{\sqrt{\pi}}, \cdots
$$

8.11 Theorem Let $\left\{\phi_{n}\right\}$ be orthonormal on $[a, b]$. Let $s_{n}(x)$ be the nth partial sum of the Fourier series of f, and suppose $t_{n}(x)$

$$
s_{n}(x)=\sum_{m=1}^{n} c_{m} \phi_{m}(x) \quad t_{n}(x)=\sum_{m=1}^{n} \gamma_{m} \phi_{m}(x)
$$

Then we have the equation below as the equality holds if and only if $\gamma_{m}=c_{m}(m=1, \cdots, n)$.

$$
\int_{a}^{b}\left|f-s_{n}\right|^{2} d x \leq \int_{a}^{b}\left|f-t_{n}\right|^{2} d x
$$

8.12 Theorem If $\left\{\phi_{n}\right\}$ is orthonormal on $[a, b]$, and if

$$
f(x) \sim \sum_{n=1}^{\infty} c_{n} \phi_{n}(x)
$$

then

$$
\sum_{n=1}^{\infty}\left|c_{n}\right|^{2} \leq \int_{a}^{b}|f(x)|^{2} d x
$$

In particular,

$$
\lim _{n \rightarrow \infty} c_{n}=0
$$

8.13 Trigonometric series

$$
s_{N}(x)=s_{N}(f ; x)=\sum_{-N}^{N} c_{n} e^{i n x}
$$

In order to obtain an expression for s_{N}, we introduce the Dirichlet kernel

$$
\begin{gathered}
D_{N}(x)=\sum_{n=-N}^{N} e^{i n x}=\frac{\sin \left[\left(N+\frac{1}{2}\right) x\right]}{\sin (x / 2)} \\
\left(e^{i x}-1\right) D_{N}(x)=e^{i(N+1) x}-e^{-i N x} \\
s_{N}(f ; x)=\sum_{-N}^{N} \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i n t} d t e^{i n x}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) \sum_{-N}^{N} e^{i n(x-t)} d t
\end{gathered}
$$

mark
8.14 Theorem If for some x, there are constants $\delta>0$ and $M<\infty$ such that $|f(x+t)-f(x)| \leq$ $M|t|$ for all $t \in(-\delta, \delta)$, then

$$
\lim _{N \rightarrow \infty} s_{N}(f ; x)=f(x)
$$

8.15 Theorem If f is continuous (with period 2π) and if $\epsilon>0$, then there is a trigonometric polynomial P such that $|P(x)-f(x)|<\epsilon$ for all real x.
8.16 Parseval's theorem Suppose f and g are Riemann-integrable functions with period 2π, and

$$
\begin{array}{rl}
f(x) \sim \sum_{-\infty}^{\infty} c_{n} e^{i n x} & g(x) \sim \sum_{-\infty}^{\infty} \gamma_{n} e^{i n x} \\
\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) \overline{g(x)} d x=\sum_{-\infty}^{\infty} c_{n} \overline{\gamma_{n}} & \frac{1}{2 \pi} \int_{-\infty}^{\infty}|f(x)|^{2} d x=\sum_{-\infty}^{\infty}\left|c_{n}\right|^{2}
\end{array}
$$

The Gamma Function

8.17 Definition For $0<x<\infty$,

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

8.18 Theorem

(a) The functional equation $\Gamma(x+1)=x \Gamma(x)$ holds if $0<x<\infty$.
(b) $\Gamma(n+1)=n$! for $n=1,2,3, \cdots$
(c) $\log \Gamma$ is convex on $(0, \infty)$.
8.19 Theorem If f is a positive function on $(0, \infty)$ such that
(a) $f(x+1)=x f(x)$,
(b) $f(1)=1$,
(c) $\log f$ is convex,
then $f(x)=\Gamma(x)$.
8.20 Theorem If $x>0$ and $y>0$, then

$$
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}
$$

8.21 Theorem

$$
\begin{gathered}
2 \int_{0}^{\pi / 2}(\sin \theta)^{2 x-1}(\cos \theta)^{2 y-1} d \theta=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \\
\Gamma(x)=\frac{2^{x-1}}{\sqrt{\pi}} \Gamma\left(\frac{x}{2}\right) \Gamma\left(\frac{x+1}{2}\right)
\end{gathered}
$$

8.22 Stirling's formula This provides a simple approximate expression for $\Gamma(x+1)$ when x is large (hence for $n!$ when n is large). The formula is

$$
\lim _{x \rightarrow \infty} \frac{\Gamma(x+1)}{(x / e)^{x} \sqrt{2 \pi x}}=1
$$

9 Functions of Several Variables

Linear Transformations

\qquad

Differentiation

9.11 Definition Suppose E is an open set in R^{n}, \mathbf{f} maps E into R^{m}, and $\mathbf{x} \in E$. If there exists a linear transformation A of R^{n} into R^{m} such that

$$
\lim _{\mathbf{h} \rightarrow 0} \frac{|\mathbf{f}(\mathbf{x}+\mathbf{h})-\mathbf{f}(\mathbf{x})-A \mathbf{h}|}{|\mathbf{h}|}=0
$$

then we say that \mathbf{f} is differentiable at \mathbf{x}, and we write

$$
\mathbf{f}^{\prime}(\mathbf{x})=A
$$

If \mathbf{f} is differentiable at every $\mathbf{x} \in E$, we say that \mathbf{f} is differentiable in E.
9.16 Partial derivatives We again consider a function \mathbf{f} that maps an open set $E \subset R^{n}$ into R^{m}. Let $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$ and $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{m}\right\}$ be the standard bases of R^{n} and R^{m}. The components of \mathbf{f} are the real functions f_{1}, \cdots, f_{m} defined by $(\mathrm{x} \in E)$

$$
\mathbf{f}(\mathbf{x})=\sum_{i=1}^{m} f_{i}(\mathbf{x}) \mathbf{u}_{i}
$$

or, equivalently, by $f_{i}(x)=\mathbf{f}(\mathbf{x}) \cdot \mathbf{u}_{i} 1 \leq i \leq m$.
For $\mathbf{x} \in E, 1 \leq i \leq m, 1 \leq j \leq n$, we define

$$
\left(D_{j} f_{i}\right)(\mathbf{x})=\lim _{t \rightarrow 0} \frac{f_{i}\left(\mathbf{x}+t \mathbf{e}_{j}\right)-f_{i}(\mathbf{x})}{t}
$$

provided the limit exists. We see that $D_{j} f_{i}$ is the derivative of f_{i} with respect to x_{j}, keeping the other variables fixed. The notation

$$
D_{j} f_{i}=\frac{\partial f_{i}}{\partial x_{j}}
$$

is therefore often used, and $D_{j} f_{i}$ is called a partial derivative.
9.17 Theorem Suppose \mathbf{f} maps an open set $E \subset R^{n}$ into R^{m}, and \mathbf{f} is differentiable at a point $\mathbf{x} \in E$. Then the partial derivatives $\left(D_{j} f_{i}\right)(\mathbf{x})$ exist, and

$$
\mathbf{f}^{\prime}(\mathbf{x}) \mathbf{e}_{j}=\sum_{i=1}^{m}\left(D_{j} f_{i}\right)(\mathbf{x}) \mathbf{u}_{i} \quad(1 \leq j \leq n)
$$

where $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$ and $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{m}\right\}$ are the standard bases of R^{n} and R^{m}.

$$
\mathbf{f}^{\prime}(\mathbf{x})=\left[\begin{array}{ccc}
\left(D_{1} f_{1}\right)(\mathbf{x}) & \cdots & \left(D_{n} f_{1}\right)(\mathbf{x}) \\
\cdots & \cdots & \cdots \\
\left(D_{1} f_{m}\right)(\mathbf{x}) & \cdots & \left(D_{n} f_{m}\right)(\mathbf{x})
\end{array}\right]
$$

9.20 Definition A differentiable mapping \mathbf{f} of an open set $E \subset R^{n}$ into R^{m} is said to be continuously differentiable in E if \mathbf{f}^{\prime} is a continuous mapping of E into $L\left(R^{n}, R^{m}\right)$.

More explicitly, it is required that to every $\mathbf{x} \in E$ and to every $\epsilon>0$ corresponds a $\delta>0$ such that $\left\|\mathbf{f}^{\prime}(\mathbf{y})-\mathbf{f}^{\prime}(\mathbf{x})\right\|<\epsilon$ if $\mathbf{y} \in E$ and $|\mathbf{x}-\mathbf{y}|<\delta$. We also say that \mathbf{f} is a \mathscr{C}^{\prime}-mapping, or that $\mathbf{f} \in \mathscr{C}^{\prime}(E)$.
9.21 Theorem Suppose \mathbf{f} maps an open set $E \subset R^{n}$ into R^{m}. Then $\mathbf{f} \in \mathscr{C}^{\prime}(E)$ if and only if the partial derivatives $D_{j} f_{i}$ exist and are continuous on E for $1 \leq i \leq m, 1 \leq j \leq n$.

The Contraction Principle

9.22 Definition Let X be a metric space, with metric d. If φ maps X into X and if there is a number $c<1$ such that

$$
d(\varphi(x), \varphi(y)) \leq c d(x, y)
$$

for all $x, y \in X$, then φ is said to be a contraction of X into X.
9.23 Theorem If X is a complete metric space, and if φ is a contraction of X into X, then there exists one and only one $x \in X$ such that $\varphi(x)=x$.

The Inverse Function Theorem

9.24 Theorem Suppose \mathbf{f} is a \mathscr{C}^{\prime}-mapping of an open set $E \subset T^{n}$ into $R^{n}, \mathbf{f}^{\prime}(\mathbf{a})$ is invertible for some $\mathbf{a} \in E$, and $\mathbf{b}=\mathbf{f}(\mathbf{a})$. Then
(a) there exist open sets U and V in R^{n} such that $\mathbf{a} \in U, \mathbf{b} \in V, \mathbf{f}$ is one-to-one on U, and $\mathbf{f}(U)=V ;$
(b) if \mathbf{g} is the inverse of \mathbf{f}, defined in V by $\mathbf{g}(\mathbf{f}(\mathbf{x}))=\mathbf{x}(\mathbf{x} \in U)$, then $\mathbf{g} \in \mathscr{C}^{\prime}(V)$.
9.25 Theorem If \mathbf{f} is a \mathscr{C}^{\prime}-mapping of an open set $E \subset R^{n}$ into R^{n} and if $\mathbf{f}^{\prime}(\mathbf{x})$ is invertible for every $\mathbf{x} \in E$, then $\mathbf{f}(W)$ is an open subset of R^{n} for every open set $W \subset E$.

In other words, \mathbf{f} is an open mapping of E into R^{n}.

The Implicit Function Theorem

Every $A \in L\left(R^{n+m}, R^{n}\right)$ can be split into two linear transformations A_{x} and A_{y}, defined by $A_{x} \mathbf{h}=A(\mathbf{h}, \mathbf{0}), A_{y} \mathbf{k}=A(\mathbf{0}, \mathbf{k})$ for any $\mathbf{h} \in R^{n}, \mathbf{k} \in R^{m}$. Then $A_{x} \in L\left(R^{n}\right), A_{y} \in L\left(R^{m}, R^{n}\right)$, and $A(\mathbf{h}, \mathbf{k})=A_{x} \mathbf{h}+A_{y} \mathbf{k}$.
9.27 Theorem If $A \in L\left(R^{n+m}, R^{n}\right)$ and if A_{x} is invertible, then there corresponds to every $\mathbf{k} \in R^{m}$ a unique $\mathbf{h} \in R^{n}$ such that $A(\mathbf{h}, \mathbf{k})=\mathbf{0}$.
9.28 Theorem Let \mathbf{f} be a \mathscr{C}^{\prime}-mapping of an open set $E \subset R^{n+m}$ into R^{n}, such that $\mathbf{f}(\mathbf{a}, \mathbf{b})=0$ for some point $(\mathbf{a}, \mathbf{b}) \in E$.

Put $A=\mathbf{f}^{\prime}(\mathbf{a}, \mathbf{b})$ and assume that A_{x} is invertible.
Then there exist open sets $U \subset R^{n+m}$ and $W \subset R^{m}$, with $(\mathbf{a}, \mathbf{b}) \in U$ and $\mathbf{b} \in W$, having the following property :

To every $\mathbf{y} \in W$ corresponds a unique \mathbf{x} such that $(\mathbf{x}, \mathbf{y}) \in U$ and $\mathbf{f}(\mathbf{x}, \mathbf{y})=0$. If this \mathbf{x} is defined to be $\mathbf{g}(\mathbf{y})$, then \mathbf{g} is a \mathscr{C}^{\prime}-mapping of W into $R^{n}, \mathbf{g}(\mathbf{b})=\mathbf{a}, \mathbf{f}(\mathbf{g}(\mathbf{y}), \mathbf{y})=\mathbf{0}(\mathbf{y} \in W)$ and $\mathbf{g}^{\prime}(\mathbf{b})=-\left(A_{x}\right)^{-1} A_{y}$.

The Rank Theorem ?

9.30 Definitions Suppose X and Y are vector spaces, and $A \in L(X, Y)$, as in Def. 9.6. The null space of $\mathrm{A}, \mathscr{N}(A)$ is the set of all $\mathbf{x} \in X$ at which $A \mathbf{x}=\mathbf{0}$. It is clear that $\mathscr{N}(A)$ is a vector space in X.

Likewise, the range of $A, \mathscr{R}(A)$ is a vector space in Y.
The rank of A is defined to be the dimension of $\mathscr{R}(A)$.

Let X be a vector space. An operator $P \in L(X)$ is said to be a projection in X if $P^{2}=P$. More explicitly, the requirement is that $P(P \mathbf{x})=\mathbf{x}$ for every $\mathbf{x} \in X$. In other words, P fixes every vector in its range $\mathscr{R}(P)$.

Here are some elementary properties of projections:
(a) If P is a projection in X, then every $\mathbf{x} \in X$ has a unique representation of the form $\mathbf{x}=\mathbf{x}_{1}+\mathbf{x}_{2}$ where $\mathbf{x}_{1} \in \mathscr{R}(P), \mathbf{x}_{2} \in \mathscr{R}(P) .\left(\mathbf{x}_{1}=P \mathbf{x}\right.$ and $\left.P \mathbf{x}_{2}=\mathbf{0}\right)$
(b) If X is a finite-dimensional vector space and if X_{1} is a vector space in X, then there is a projection P in X with $\mathscr{R}(P)=X_{1}$.
9.32 Theorem Suppose m, n, r are nonnegative integers, $m \geq r, n \geq r, \mathbf{F}$ is a \mathscr{C}^{\prime}-mapping of an open set $E \subset R^{n}$ into R^{m}, and $\mathbf{F}^{\prime}(x)$ has rank r for every $\mathbf{x} \in E$.

Fix a $\in E$, put $A=\mathbf{F}^{\prime}(\mathbf{a})$, let Y_{1} be the range of A, and let P be a projection in R^{m} whose range is Y_{1}. Let Y_{2} be the null space of P.

Then there are open sets U and V in R^{n}, with $\mathbf{a} \in U, U \subset E$, and there is a 1-1 \mathscr{C}^{\prime}-mapping \mathbf{H} of V onto U (whose inverse is also of class \mathscr{C}^{\prime}) such that

$$
\mathbf{F}(\mathbf{H}(\mathbf{x}))=A \mathbf{x}+\phi(A \mathbf{x}) \quad(\mathbf{x} \in V)
$$

where ϕ is a \mathscr{C}^{\prime}-mapping of the open set $A(V) \subset Y_{1}$ into Y_{2}.

Determinants

9.33 Definition If $\left(j_{1}, \cdots, j_{n}\right)$ is an ordered n-tuple of integers, define

$$
s\left(j_{1}, \cdots, j_{n}\right)=\prod_{p<q}\left(j_{q}-j_{p}\right)
$$

where $x=1$ if $x>0, x=-1$ if $x<0, x=0$ if $x=0$.
Let $[A]$ be the matrix of a linear operator A on R^{n}, relative to the standard basis $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$, with entries $a(i, j)$ in the i th row and j th column. The determinant of $[A]$ is defined to the the number

$$
\operatorname{det}[A]=\sum s\left(j_{1}, \cdots, j_{n}\right) a\left(1, j_{1}\right) a\left(2, j_{2}\right) \cdots a\left(n, j_{n}\right)
$$

Derivatives of Higher Order

9.39 Definition Suppose f is a real function defined in an open set $E \subset R^{n}$ with partial derivatives $D_{1} f, \cdots, D_{n} f$. If the functions $D_{j} f$ are themselves differentiable, then the secondorder partial derivatives of f are defined by

$$
D_{i j} f=D_{i} D_{j} f \quad(i, j=1, \cdots, n)
$$

If all these functions $D_{i j} f$ are continuous in E, we say that f is of class $\mathscr{C}^{\prime \prime}$ in E or that $f \in \mathscr{C}^{\prime \prime}(E)$.
9.41 Theorem Suppose f is defined in an open set $E \subset R^{2}$, suppose that $D_{1} f, D_{21} f$ and $D_{2} f$ exist at every point of E, and $D_{21} f$ is continuous at some point $(a, b) \in E$.

Then $D_{12} f$ exists at (a, b) and

$$
\left(D_{12} f\right)(a, b)=\left(D_{21} f\right)(a, b)
$$

Corollary $\left(D_{12} f\right)=\left(D_{21} f\right)$ if $f \in \mathscr{C}^{\prime \prime}(E)$.

Differentiation of Integrals

$$
\frac{d}{d t} \int_{a}^{b} \phi(x, t) d x=\int_{a}^{b} \frac{\partial \phi}{\partial t}(x, t) d x
$$

9.42 Theorem Suppose

(a) $\phi(x, t)$ is defined for $a \leq x \leq b, c \leq t \leq d$;
(b) α is an increasing function on $[a, b]$;
(c) $\phi(x, t)=\phi^{t}(x) \in \mathscr{R}(\alpha)$ for every $t \in[a, b]$;
(d) $c<s<d$, and to every $\epsilon>0$ corresponds a $\delta>0$ such that

$$
\left|\left(D_{2} \phi\right)(x, t)-\left(D_{2} \phi\right)(x, s)\right|<\epsilon
$$

for all $x \in[a, b]$ and for all $t \in(s-\delta, s+\delta)$.
Define

$$
f(t)=\int_{a}^{b} \phi(x, t) d \alpha(x) \quad(c \leq t \leq d)
$$

Then $\left(D_{2} \phi\right)^{s} \in \mathscr{R}(\alpha), f^{\prime}(s)$ exists, and

$$
f^{\prime}(s)=\int_{a}^{b}\left(D_{2} \phi\right)(x, s) d \alpha(x)
$$

10 Integration of Differential Forms

Integration

10.2 Theorem For every $f \in \mathscr{C}\left(I_{k}\right), L(f)=L^{\prime}(f)$.

$$
\begin{aligned}
\int_{a_{1}}^{b_{1}} & \int_{a_{2}}^{b_{2}} \cdots \int_{a_{k}}^{b_{k}} f_{k} d x_{k}=\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f_{2} d x_{2}=\int_{I^{k}} f=L\left(h_{1} h_{2} \cdots h_{k}\right)=L(h) \\
& =\prod_{i=1}^{k} \int_{a_{i}}^{b_{i}} h_{i}\left(x_{i}\right) d x_{i}=\int_{a_{i}}^{b_{i}} \int_{a_{1}}^{b_{1}} \cdots \int_{a_{i-1}}^{b_{i-1}} \int_{a_{i+1}}^{b_{i+1}} \cdots \int_{a_{j}}^{b_{j}} f_{j} d x_{j}=L^{\prime}(h)
\end{aligned}
$$

10.3 Definition The support of a real or complex function f on R^{k} is the closure of the set of all points $\mathbf{x} \in R^{k}$ at which $f(\mathbf{x}) \neq 0$. If f is continuous function with compact support, let I^{k} be any k-cell which contains the support of f and define

$$
\int_{R^{k}} f=\int_{I^{k}} f
$$

The integral so defined is evidently independent of the choice of I^{k}, provided only that I^{k} contains the support of f.

Let Q^{k} be the k-simplex which consists of all points $\mathbf{x}=\left(x_{1}, \cdots, x_{k}\right)$ in R^{k} for which $x_{1}+\cdots+x_{k} \leq 1$ and $x_{i} \geq 0$ for $i=1, \cdots, k$.

Primitive Mappings

10.5 Definition If \mathbf{G} maps an open set $E \subset R^{n}$ into R^{n}, and if there is an integer m and a real function g with domain E such that

$$
\mathbf{G}(\mathbf{x})=\sum_{i \neq m} x_{i} \mathbf{e}_{i}+g(\mathbf{x}) \mathbf{e}_{m} \quad(\mathbf{x} \in E)
$$

then we call $\mathbf{G} \underline{\underline{\text { primitive }} .}$ A primitive mapping is thus one that changes at most one coordinate.
10.6 Definition A linear operator B on R^{n} that interchanges some pair of members of the standard basis and leaves the others fixed will be called a $\underline{\underline{\text { flip}} .}$
10.7 Theorem Suppose \mathbf{F} is a \mathscr{C}^{\prime}-mapping of an open set $E \subset R^{n}$ into $R^{n}, \mathbf{0} \in E, \mathbf{F}(\mathbf{0})=\mathbf{0}$, and $\mathbf{F}^{\prime}(\mathbf{0})$ is invertible.

Then there is a neighborhood of $\mathbf{0}$ in R^{n} in which a representation

$$
\mathbf{F}(\mathbf{x})=B_{1} \cdots B_{n-1} \mathbf{G}_{n} \circ \cdots \circ \mathbf{G}_{1}(\mathbf{x})
$$

is valid. Each \mathbf{G}_{i} is a primitive \mathscr{C}^{\prime}-mapping in some neighborhood of $\mathbf{0} ; \mathbf{G}_{i}(\mathbf{0})=\mathbf{0}, \mathbf{G}_{i}^{\prime}(\mathbf{0})$ is invertible, and each B_{i} is either a flip or the identity operator.

Partitions of Unity

10.8 Theorem Suppose K is a compact subset of R^{n}, and $\left\{V_{\alpha}\right\}$ is an open cover of K. Then there exist functions $\psi_{1}, \cdots, \psi_{s} \in \mathscr{C}\left(R^{n}\right)$ such that
(a) $0 \leq \psi_{i} \leq 1$ for $1 \leq i \leq s$;
(b) each ψ_{i} has its support in some V_{S};
(c) $\psi_{1}(\mathbf{x})+\cdots+\psi_{S}(\mathbf{x})=1$ for every $\mathbf{x} \in K$.

Because of $(c),\left\{\psi_{i}\right\}$ is called a partition of unity, and (b) is sometimes expressed by saying that $\left\{\psi_{i}\right\}$ is subordinate to the cover $\left\{V_{\alpha}\right\}$.

Corollary If $f \in \mathscr{C}\left(R^{n}\right)$ and the support of f lies in K, then

$$
f=\sum_{i=1}^{s} \psi_{i} f
$$

Each $\psi_{i} f$ has its support in some V_{α}.

Change of Variables

10.9 Theorem Suppose T is a 1-1 \mathscr{C}^{\prime}-mapping of an open set $E \subset R^{k}$ into R^{k} such that $J_{T}(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in E$. If f is a continuous function on R^{k} whose support is compact and lies in $T(E)$, then

$$
\int_{R^{k}} f(\mathbf{y}) d \mathbf{y}=\int_{R^{k}} f(T(\mathbf{x}))\left|J_{T}(\mathbf{x})\right| d \mathbf{x}
$$

Differential Forms

It is a curious feature of Stokes' theorem that the only thing that is difficult about it is the elaborate structure of definitions that are needed for its statements. These definitions concern differential forms, their derivatives, boundaries, and orientatoin.
10.10 Definition Suppose E is an open set in R^{n}. A k surface in E is a \mathscr{C}^{\prime}-mapping Φ from a compact set $D \subset R^{k}$ into E.
D is called the parameter domain of Φ. Points of D will be denoted by $\mathbf{u}=\left(u_{1}, \cdots, u_{k}\right)$. We stress that k-surface in E are defined to be mapping into E, not subsets of E.
10.11 Definition Suppose E is an open set in R^{n}. A differential form of order $k \geq 1$ in E (briefly, a $\underline{\underline{k} \text {-form }}$ in E) is a function ω symbolically represented by the sum

$$
\omega=\sum a_{i_{1} \cdots i_{k}}(\mathbf{x}) d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

(the indices range independently from 1 to n), which assigns to each k-surface Φ in E a number $\omega(\Phi)=\int_{\Phi} \omega$, according to the rule

$$
\int_{\Phi} \omega=\int_{D} \sum a_{i_{1} \cdots i_{k}}(\Phi(\mathbf{u})) \frac{\partial\left(x_{i_{1}}, \cdots, x_{i_{k}}\right)}{\partial\left(u_{1}, \cdots, u_{k}\right)} d \mathbf{u}
$$

where D is the parameter domain of Φ.
10.13 Elementary properties Let $\omega, \omega_{1}, \omega_{2}$ be k-forms in E. We write $\omega_{1}=\omega_{2}$ if and only if $\omega_{1}(\Phi)=\omega_{2}(\Phi)$ for every k-surface $i n \Phi$ in E.

$$
\int_{\Phi} a \omega_{1}+b \omega_{2}=a \int_{\Phi} \omega_{1}+b \int_{\Phi} \omega_{2}
$$

10.14 Basic k-forms If i_{1}, \cdots, i_{k} are integers such that $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$, and if I is the ordered k-tuple $\left\{i_{1}, \cdots, i_{k}\right\}$, then we call I an increasing k-index, and we use the brief notation

$$
d x_{I}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

These forms $d x_{I}$ are the so-called basic k-forms in R^{n}.

$$
d x_{j_{1}} \wedge \cdots \wedge d x_{j_{k}}=\epsilon\left(j_{1}, \cdots, j_{k}\right) d x_{J}=s\left(j_{1}, \cdots, j_{k}\right) d x_{J}
$$

If every k-tuple is converted to an increasing k-index, then we obtain the so-called standard $\underline{\text { presentation }}$ of ω :

$$
\omega=\sum_{I} b_{I}(\mathbf{x}) d x_{I}
$$

10.15 Theorem Suppose

$$
\omega=\sum_{I} b_{I}(\mathbf{x}) d x_{I}
$$

is the standard presentation of a k-form ω in an open set $E \subset R^{n}$. If $\omega=0$ in E, then $b_{I}(\mathbf{x})=0$ for every increasing k-index I and for every $\mathrm{x} \in E$.

10.16 Products of basic k-forms Suppose

$$
I=\left\{i_{1}, \cdots i_{p}\right\} \quad J=\left\{j_{1}, \cdots, j_{q}\right\}
$$

where $1 \leq i_{1}<\cdots<i_{p} \leq n$ and $1 \leq j_{1}<\cdots<j_{p} \leq n$. The product of the corresponding basic forms $d x_{I}$ and $d x_{J}$ in R^{n} is a $(p+q)$-form in R^{n}, denoted by the symbol $d x_{I} \wedge d x_{J}$, and defined by

$$
d x_{I} \wedge d x_{J}=d x_{i_{1}} \wedge \cdots \wedge d x_{i_{p}} \wedge d x_{j_{1}} \wedge \cdots \wedge d x_{j_{q}}
$$

10.17 Multiplication Suppose ω and λ are p - and q-forms, respectively, in some open set $E \subset R^{n}$, with standard presentations

$$
\omega=\sum_{I} b_{I}(\mathbf{x}) d x_{I} \quad \lambda=\sum_{J} c_{J}(\mathbf{x}) d x_{J}
$$

where I and J range over all increasing p-indices and over all increasing q-indices taken from the set $\{1, \cdots, n\}$. Their product, denoted by the symbol $\omega \wedge \lambda$, is defined to be

$$
\omega \wedge \lambda=\sum_{I, J} b_{I}(\mathbf{x}) c_{J}(\mathbf{x}) d x_{I} \wedge d x_{J}
$$

10.18 Differentiation We shall now define a differentiation operator d which associates a $(k+1)$-form $d \omega$ to each k-form ω of class \mathscr{C}^{\prime} in some open set $E \subset R^{n}$.

A 0 -form of class \mathscr{C}^{\prime} in E is just a real function $f \in \mathscr{C}^{\prime}(E)$, and we define

$$
d f=\sum_{i=1}^{n}\left(D_{i} f\right)(\mathbf{x}) d x_{i}
$$

If $\omega=\sum b_{I}(\mathbf{x}) d x_{I}$ is the standard presentation of a k-form ω, and $b_{I} \in \mathscr{C}^{\prime}(E)$ for each increasing k-index I, then we define

$$
d \omega=\sum_{I}\left(d b_{I}\right) \wedge d x_{I}
$$

10.20 Theorem

(a) If ω and λ are k - and m - forms, respectively, of class \mathscr{C}^{\prime} in E, then

$$
d(\omega \wedge \lambda)=(d \omega) \wedge \lambda+(-1)^{k} \omega \wedge d \lambda
$$

(b) If ω is of class $\mathscr{C}^{\prime \prime}$ in E, then $d^{2} \omega=d(d \omega)=0$.
10.21 Change of variables Suppose E is an open set in R^{n}, T is a \mathscr{C}^{\prime}-mapping of E into an open set $V \subset R^{m}$, and ω is a k-form in V, whose standard presentation is (we use y for points of V, x for points of E.)

$$
\omega=\sum_{I} b_{I}(\mathbf{y}) d y_{I}
$$

Let t_{1}, \cdots, t_{m} be the components of T : if $\mathbf{y}=\left(y_{1}, \cdots, y_{m}\right)=T(\mathbf{x})$, then $y_{i}=t_{i}(\mathbf{x})$. According to 10.18 ,

$$
d t_{i}=\sum_{j=1}^{n}\left(D_{j} t_{i}\right)(\mathbf{x}) d x_{j} \quad(1 \leq i \leq m)
$$

Thus each $d t_{i}$ is a 1 -form in E.
The mapping T transforms ω into a k-form ω_{T} in E, whose definition is

$$
\omega_{T}=\sum_{I} b_{I}(T(\mathbf{x})) d t_{i_{1}} \wedge \cdots \wedge d t_{i_{k}}
$$

10.22 Theorem With E and T as in 10.21, let ω and λ be k - and m-forms in V, respectively. Then
(a) $(\omega+\lambda)_{T}=\omega_{T}+\lambda_{T}$ if $k=m$;
(b) $(\omega \wedge \lambda)_{T}=\omega_{T} \wedge \lambda_{T}$;
(c) $d\left(\omega_{T}\right)=(d \omega)_{T}$ if ω is of class \mathscr{C}^{\prime} and T is of class $\mathscr{C}^{\prime \prime}$.

10.23 Theorem Suppose

$$
\begin{aligned}
& T: E \subset R^{n} \rightarrow V \subset R^{m} ; \quad \omega: k \text {-form in } W ; \\
& S: V \subset R^{m} \rightarrow W \subset R^{p} ; \quad \omega_{S}: k \text {-form in } V ; \quad \omega_{S T}: k \text {-form in } E \text {; }
\end{aligned}
$$

where $S T$ is defined by $(S T)(\mathbf{x})=S(T(\mathbf{x}))$. Then $\underline{\left(\omega_{S}\right)_{T}=\omega_{S T}}$.
10.24 Theorem Suppose ω is a k-form in an open set $E \subset R^{n}, \Phi$ is a k-surface in E, with parameter domain $D \subset R^{k}$, and Δ is the k-surface in R^{k}, with parameter domain D, defined by $\Delta(\mathbf{u})=\mathbf{u}(\mathbf{u} \in D)$. Then

$$
\int_{\Phi} \omega=\int_{\Delta} \omega_{\Phi}
$$

10.25 Theorem Suppose T is a \mathscr{C}^{\prime}-mapping of an open set $E \subset R^{n}$ into an open set $V \subset R^{m}$, Φ is a k-surface in E, and ω is a k-form in V. Then

$$
\int_{T \Phi} \omega=\int_{\Phi} \omega_{T}
$$

Simplexes and Chains

10.26 Affine simplexes A mapping \mathbf{f} that carries a vector space X into a vector space Y is said to be affine if $\mathbf{f}-\mathbf{f}(\mathbf{0})$ is linear. $(\mathbf{f}(\mathbf{x})=\mathbf{f}(\mathbf{0})+A \mathbf{x}$ for some $A \in L(X, Y)$.)

An affine mapping of R^{k} into R^{n} is thus determined if we know $\mathbf{f}(\mathbf{0})$ and $\mathbf{f}\left(\mathbf{e}_{i}\right)$ for $1 \leq i \leq k$; as usual, $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{k}\right\}$ is the standard basis of R^{k}.

We define the standard simplex Q^{k} to be the set of all $\mathbf{u} \in R^{k}$ of the form

$$
\mathbf{u}=\sum_{i=1}^{k} \alpha_{i} \mathbf{e}_{i}
$$

such that $\alpha_{i} \geq 0$ for $i=1, \cdots, k$ and $\sum \alpha_{i} \leq 1$.
Assume now that $\mathbf{p}_{0}, \mathbf{p}_{1}, \cdots, \mathbf{p}_{k}$ are points of R^{n}. The oriented affine k-simplex

$$
\sigma=\left[\mathbf{p}_{0}, \mathbf{p}_{1}, \cdots, \mathbf{p}_{k}\right]
$$

is defined to be the k-surface in R^{n} with parameter domain Q^{k} which is given by the affine mapping

$$
\sigma\left(\alpha_{1} \mathbf{e}_{1}+\cdots+\alpha_{k} \mathbf{e}_{k}\right)=\mathbf{p}_{0}+\sum_{i=1}^{k} \alpha_{i}\left(\mathbf{p}_{i}-\mathbf{p}_{0}\right)
$$

10.27 Theorem If σ is an oriented rectilinear k-simplex in an open set $E \subset R^{n}$ and if $\bar{\sigma}=\epsilon \sigma$ then

$$
\int_{\bar{\sigma}} \omega=\epsilon \int_{\sigma} \omega
$$

for every k-form ω in E.
10.28 Affine chains An affine k-chain Γ in an open set $E \subset R^{n}$ is a collection of finitely many oriented affine k-simplexes $\sigma_{1}, \cdots, \sigma_{r}$ in E. // These need not be distinct; a simplex may thus occur in Γ with a certain multiplicity.

If Γ is as above, and if ω is a k-form in E, we define

$$
\int_{\Gamma} \omega=\sum_{i=1}^{r} \int_{\sigma_{i}} \omega
$$

$$
\sigma=\left[\mathbf{p}_{0}, \mathbf{p}_{1}, \cdots, \mathbf{p}_{k}\right]
$$

is defined to be the affine $(k-1)$-chain

$$
\partial \sigma=\sum_{j=0}^{k}(-1)^{j}\left[\mathbf{p}_{0}, \cdots, \mathbf{p}_{j-1}, \mathbf{p}_{j+1}, \cdots \mathbf{p}_{k}\right]
$$

10.30 Differentiable simplexes and cains Let T be a $\mathscr{C}^{\prime \prime}$-mapping of an open set $E \subset R^{n}$ into an open set $V \subset R^{m} ; T$ need not be one-to-one. If σ is an oriented affine k-simplex in E, then the composite mapping $\Phi=T \circ \sigma$ (which we shall sometimes write in the simpler form $T \sigma$) is a k-surface in V, with parameter domain Q^{k}. We call Φ an oriented k-simplex of class $\mathscr{C}^{\prime \prime}$.

A finite collection Ψ of oriented k-simplexes $\Phi_{1}, \cdots, \Phi_{r}$ of class $\mathscr{C}^{\prime \prime}$ in V is called a $\underline{\underline{k} \text {-chain of }}$ $\underline{\underline{\text { class }}} \mathscr{C}^{\prime \prime}$ in V. If ω is a k-form in V, we define

$$
\int_{\Psi} \omega=\sum_{i=1}^{r} \int_{\Phi_{i}} \omega
$$

and use the corresponding notation $\Psi=\sum \Phi_{i}$.
Finally, we define the boundary $\partial \Psi$ of the k-chain $\Psi=\sum \Phi_{i}$ to be the ($k-1$)-chain

$$
\partial \Psi=\sum \partial \Phi_{i}
$$

10.31 Let Q^{n} be the standard simplex in R^{n}, let σ_{0} be the identity mapping with domain Q^{n}. (As in 10.26) σ_{0} may be regarded as a positively oriented n-simplex in R^{n} Its boundary $\partial \sigma_{0}$ is an affine ($n-1$)-chain. This chain is called the positively oriented boundary of the set Q^{n}.

Stokes' Theorem

10.33 Theorem If Ψ is a k-chain of class $\mathscr{C}^{\prime \prime}$ in an open set $V \subset R^{m}$ and if ω is a $(k-1)$-form of class \mathscr{C}^{\prime} in V , then

$$
\int_{\Psi} d \omega=\int_{\partial \Psi} \omega
$$

Closed Forms and Exact Forms

Vector Analysis

11 The Lebesgue Theory

Set Functions

Construction of the Lebesgue Measure
Measure Spaces
Measurable Functions
Simple Functions
Integration
Comparison with the Riemann Integral
Integration of Complex Functions
Functions of Class L^{2}

